Breast Cancer Prediction

IST 718 Final Project Report Group 1 Mike DeMaria, Lu Guo, Haotian Shen, Casey Walsh

Introduction

When a tumor is detected, it needs to be assessed if it's benign or malignant.

Nowadays, Machine Learning has been widely used to help detect tumors.

We want to know that given the output of the image analysis, can we predict malignancy?

Data Exploration

We obtain breast cancer data from Kaggle:

https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data/data

569 rows

32 columns:

- patient ID
- 1 binary output variable (benign or malignant)
- 30 numerical variables of cancer cells

10 categories: radius, texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, and fractal dimension.

3 values for each feature: the **mean**, the **standard error**, and the mean of the three **worst** (largest) cells.

Data Exploration

Data Exploration

The below columns have very low correlation to diagnosis:

- fractal_dimension_mean,
- texture_se,

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- smoothness_se,
- symmetry_se,
- fractal_dimension_se.

When doing feature engineering, maybe we can try to remove these columns.

Original Model

- Decision Tree Model
- Used 3 of the thirty available features
 - Mean Texture
 - Worst Area
 - Worst Smoothness
- Small subsets chosen for compute speed
- Original Model achieved 97% accuracy
- Attempt to replicate this model achieved 92% accuracy
 - Depth 6
 - 28 nodes

Recreating the Original Model

- Decision Tree Model trained with the same three features
 - Trained in under 10 seconds
- Initial accuracy of 92%
- Retrained model with three features and hyperparameter grid search
 - Trained 120 models in approximately 10 minutes
 - Best model parameters:
 - Depth 5
 - 15 nodes
- Final accuracy of 96%

Recall: 0.9056603773584906

F1-score: 0.9036103412930414

3.0

45.0

5.0

52.0

Confusion Matrix:

Drop 'fractal_dimension_mean', 'texture_se', 'smoothness_se', 'symmetry_se', 'fractal_dimension_se'

	Predict	Benign	Predict	Malignance
Actual Benign		100.0		2.0
Actual Malignance		10.0		47.0

Accuracy: 0.9245283018867925 Precision: 0.9270486925473448 Recall: 0.9245283018867925 F1-score: 0.9231043075827697

	accuracy	precision	recall	f1-score
All mean features	0.9308	0.9314	0.9308	0.9301
All standard error features	0.9057	0.9082	0.9057	0.9036
All worst features	0.9371	0.9371	0.9371	0.9371
All features	0.8944	0.8947	0.8944	0.8945
All features(large)	0.8994	0.8995	0.8994	0.8980
All features+Drop(large)	0.9245	0.9270	0.9245	0.9231

Additional Models

Algorithm	Data Used	AUC	Runtime (seconds)
Logistic Regression	"Worst" Cells	95.5%	2.1
Random Forest	All	97.9%	6.2
Logistic Regression (Increased iterations)	Mean/Std Dev	98.3%	4.8
GBT	All	98.9%	11.8
Logistic Regression	Mean/Std Dev	99.1%	2.14
LinearSVC	All	99.6%	28.3
Logistic Regression	All	99.7%	4.2

Best Models Bottom/Top Coefficients

Logistic Regression

LinearSVC

column	weight	column
fractal_dimension_se	-50.704968	fractal_dimension_se
compactness_se	-15.175633	al_dimension_mean
fractal_dimension_mean	-8.309953	symmetry_se
symmetry_mean	-4.847624	compactness_se
compactness_mean	-0.819665	smoothness_se
symmetry_worst	4.701169	ave points_worst
concave points_mean	7.239326	cave points_mean
smoothness_worst	8.128446	smoothness_mean
smoothness_se	8.637392 -	smoothness_worst
concave points_se	15.322802	concave points_se

Best Models Quality

	Linear Regression	LinearSVC
Runtime	4.2 seconds	28.3 seconds
AUC	99.7%	99.6%
Accuracy	98%	98%
Precision	96%	98%
Recall	100%	99%
F-measure	98%	99%
False Positives	4	2
False Negatives	0	1

Thanks!